11 research outputs found

    Shadow symbolic execution for better testing of evolving software

    Get PDF
    In this idea paper, we propose a novel way for improving the testing of program changes via symbolic execution. At a high-level, our technique runs two different program versions in the same symbolic execution instance, with the old version effectively shadowing the new one. In this way, the technique can exploit precise dynamic value information to effectively drive execution toward the behaviour that has changed from one version to the next. We discuss the main challenges and opportunities of this approach in terms of pruning and prioritising path exploration, mapping elements across versions, and sharing common symbolic state between versions. Copyright © 2014 ACM

    Shadow of a Doubt: Testing for Divergences Between Software Versions

    No full text
    © 2016 ACM.While developers are aware of the importance of comprehensively testing patches, the large effort involved in coming up with relevant test cases means that such testing rarely happens in practice. Furthermore, even when test cases are written to cover the patch, they often exercise the same behaviour in the old and the new version of the code. In this paper, we present a symbolic execution-based technique that is designed to generate test inputs that cover the new program behaviours introduced by a patch. The technique works by executing both the old and the new version in the same symbolic execution instance, with the old version shadowing the new one. During this combined shadow execution, whenever a branch point is reached where the old and the new version diverge, we generate a test case exercising the divergence and comprehensively test the new behaviours of the new version. We evaluate our technique on the Coreutils patches from the CoREBench suite of regression bugs, and show that it is able to generate test inputs that exercise newly added behaviours and expose some of the regression bugs

    Shadow symbolic execution for testing software patches

    Get PDF
    While developers are aware of the importance of comprehensively testing patches, the large effort involved in coming up with relevant test cases means that such testing rarely happens in practice. Furthermore, even when test cases are written to cover the patch, they often exercise the same behaviour in the old and the new version of the code. In this article, we present a symbolic execution-based technique that is designed to generate test inputs that cover the new program behaviours introduced by a patch. The technique works by executing both the old and the new version in the same symbolic execution instance, with the old version shadowing the new one. During this combined shadow execution, whenever a branch point is reached where the old and the new version diverge, we generate a test case exercising the divergence and comprehensively test the new behaviours of the new version. We evaluate our technique on the Coreutils patches from the CoREBench suite of regression bugs, and show that it is able to generate test inputs that exercise newly added behaviours and expose some of the regression bugs

    Techniques and tools for the verification of concurrent systems

    No full text
    Model checking is an automatic formal verification technique for establishing correctness of systems. It has been widely used in industry for analysing and verifying complex safety-critical systems in application domains such as avionics, medicine and computer security, where manual testing is infeasible and even minor errors could have dire consequences. In our increasingly parallelised world, concurrency has become pivotal and seamlessly woven within programming paradigms, however, extremely challenging when it comes to modelling and establishing correctness of intended behaviour. Tools for model checking concurrent systems face severe limitations due to scalability problems arising from the need to examine all possible interleavings (schedules) of executions of parallel components. Moreover, concurrency poses additional challenges to model checking, giving rise to phenomena such as nondeterminism, deadlock, livelock, etc. In this thesis we focus on adapting and developing novel model-checking techniques for concurrent systems in the setting of the process algebra CSP and its primary model checker FDR. CSP allows for a compact modelling and precise analysis of event-based concurrency, grounded on synchronous message passing as a fundamental mechanism of inter-component communication. In particular, we investigate techniques based on symbolic model checking, static analysis and abstraction, all of them exploiting the compositionality inherent in CSP and targeting to increase the scale of systems that can be tractably analysed. Firstly, we investigate symbolic model-checking techniques based on Boolean satisfiability (SAT), which we adapt for the traces model of CSP. We tailor bounded model checking (BMC), that can be used for bug detection, and temporal k-induction, which aims at establishing inductiveness of properties and is capable of both bug finding and establishing the correctness of systems. Secondly, we propose a static analysis framework for establishing livelock freedom of CSP processes, with lessons for other concurrent formalisms. As opposed to traditional exhaustive state-space exploration, our framework employs a system of rules on the syntax of a process to calculate a sound approximation of its fair/co-fair sets of events. The rules either safely classify a process as livelock-free or report inconclusiveness, thereby trading accuracy for speed. Finally, we develop a series of abstraction/refinement schemes for the traces, stable-failures and failures-divergences models of CSP and embed them into a fully automated and compositional CEGAR framework. For each of those techniques we present an implementation and an experimental evaluation on a set of CSP benchmarks.</p

    SAT−solving in CSP trace refinement

    Get PDF
    AbstractIn this paper, we address the problem of applying SAT-based bounded model checking (BMC) and temporal k-induction to asynchronous concurrent systems. We investigate refinement checking in the process-algebraic setting of Communicating Sequential Processes (CSP), focusing on the CSP traces model which is sufficient for verifying safety properties. We adapt the BMC framework to the context of CSP and the existing refinement checker FDR yielding bounded refinement checking which also lays the foundation for tailoring the k-induction technique. As refinement checking reduces to checking for reverse containment of possible behaviours, we exploit the SAT-solver to decide bounded language inclusion as opposed to bounded reachability of error states, as in most existing model checkers. Due to the harder problem to decide and the presence of invisible silent actions in process algebras, the original syntactic translation of BMC to SAT cannot be applied directly and we adopt a semantic translation algorithm based on watchdog transformations. We propose a Boolean encoding of CSP processes resting on FDR’s hybrid two-level approach for calculating the operational semantics using supercombinators. We have implemented a prototype tool, SymFDR, written in C++, which uses FDR as a shared library for manipulating CSP processes and the state-of-the-art incremental SAT-solver MiniSAT 2.0. Experiments with BMC indicate that in some cases, especially in complex combinatorial problems, SymFDR significantly outperforms FDR and even copes with problems that are beyond FDR’s capabilities. SymFDR in k-induction mode works reasonably well for small test cases, but is inefficient for larger ones as the threshold becomes too large, due to concurrency

    Static Livelock Analysis in CSP

    No full text
    In a process algebra with hiding and recursion it is possible to create processes which compute internally without ever communicating with their environment. Such processes are said to diverge or livelock. In this paper we show how it is possible to conservatively classify processes as livelock-free through a static analysis of their syntax. In particular, we present a collection of rules, based on the inductive structure of terms, which guarantee livelock-freedom of the denoted process. This gives rise to an algorithm which conservatively flags processes that can potentially livelock. We illustrate our approach by applying both BDD-based and SAT-based implementations of our algorithm to a range of benchmarks, and show that our technique in general substantially outperforms the model checker FDR whilst exhibiting a low rate of inconclusive results. © 2011 Springer-Verlag

    Faster FDR Counterexample Generation Using SAT-Solving

    Get PDF
    Abstract: With the flourishing development of efficient SAT-solvers, bounded model checking (BMC) has proven to be an extremely powerful symbolic model checking technique. In this paper, we address the problem of applying BMC to concurrent systems involving the interaction of multiple processes running in parallel. We adapt the BMC framework to the context of CSP and FDR yielding bounded refinement checking. Refinement checking reduces to checking for reverse containment of possible behaviours. Therefore, we exploit the SAT-solver to decide bounded language inclusion as opposed to bounded reachability of error states, as in most existing model checkers. We focus on the CSP traces model which is sufficient for verifying safety properties. We present a Boolean encoding of CSP processes resting on FDR’s hybrid two-level approach for calculating the operational semantics using supercombinators. We describe our bounded refinement-checking algorithm which is based on watchdog transformations and incremental SAT-solving. We have implemented a tool, SymFDR, written in C++ which uses FDR as a shared library for manipulating CSP processes and the state-of-the-art SAT-solver MiniSAT. Experiments indicate that in some cases, especially for complex combinatorial problems, SymFDR significantly outperforms FDR
    corecore